Three-Dimensional Geologic Modeling of the Kiruna Mining District, Sweden: Insights into the Crustal Architecture and Structural Controls on Iron Oxide-Apatite Mineralization

Author:

Veress Ervin1,Andersson Joel B.H.1,Popova Inna2,Annesley Irvine R.3,Bauer Tobias E.1

Affiliation:

1. 1 Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97754, Sweden

2. 2 Luossavaara-Kiirunavaara AB, SE-98381 Gällivare 98381, Sweden

3. 3 GeoRessources Laboratory, Université de Lorraine, Rue du Doyen Marcel Roubault, F-54000 Nancy, France

Abstract

Abstract To support economic decisions and exploration targeting, as well as to understand processes controlling the mineralization, three-dimensional structural and lithological boundary models of the Kiruna mining district have been built using surface (outcrop observations and measurements) and subsurface (drill hole data and mine wall mapping) data. Rule-based hybrid implicit-explicit modeling techniques were used to create district-scale models of areas with high disproportion in data resolution characterized by dense, clustered, and distant data spacing. Densely sampled areas were integrated with established conceptual studies using geologic conditions and the addition of synthetic data, leading to variably constrained surfaces that facilitate the visualization, interpretation, and further integration of the geologic models. This modeling approach proved to be efficient in integrating local, frequently sampled areas with district-scale, sparsely sampled regions. Dominantly S-plunging lineation on N-S–trending fracture planes, characteristic fracture mineral fill, and weak rock mass at the ore contact indicated by poor core orientation quality and rock quality description suggest that ore-parallel fractures in the Kiirunavaara area were more commonly reactivated. Slight variation in the angular relationship of fracture sets situated in different fault-bounded blocks suggests that strain accommodation across the orebodies was uneven. The location of brittle faults identified in drill core, deposit-scale structural analysis, and aeromagnetic geophysical maps indicate a close relationship between fault locations and the iron oxide-apatite mineralization, suggesting that uneven stress accommodation and proximity of conjugate fault sets played an important role in juxtaposing blocks from different crustal depths and control the location of the iron oxide-apatite orebodies.

Publisher

Society of Economic Geologists, Inc.

Reference95 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3