Controls on the Dynamics of Rare Earth Elements During Subtropical Hillslope Processes and Formation of Regolith-Hosted Deposits

Author:

Li Martin Yan Hei1,Zhou Mei-Fu12,Williams-Jones Anthony E.13

Affiliation:

1. Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong

2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

3. Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 0E8, Canada

Abstract

Abstract Subtropical weathering of granitic catchments in South China has led to the formation of numerous giant regolith-hosted rare earth element (REE) deposits that currently account for more than 15% of global REE production and more than 95% of global heavy REE (HREE) production. Understanding the controls on mobilization and redistribution of the REEs during subtropical weathering in these granitic catchments is crucial for efficient exploration for this type of deposit in the world. As exemplified by the Bankeng light REE (LREE) deposit in South China, the key factors controlling the mobilization and redistribution of the REEs, especially the easily exchangeable REEs, are soil pH and primary REE mineralogy. The nature of the primary REE minerals, apatite, monazite-(Ce), and subordinate bastnäsite-(Ce), parisite-(Ce), and xenotime-(Y) places an important control on the behavior of the REEs during incipient weathering. Dissolution of these minerals is slow during incipient weathering, and, therefore, enrichment in REEs in this stage results largely from the removal of major elements during the decomposition of albite, K-feldspar, and biotite. Dissolution of the primary REE minerals higher in the profile liberates the REEs, which are then transported to locations where the soil pH abruptly increases due to water-regolith interaction, such as the pedolith-saprolite interface, and adsorption on kaolinite-group minerals efficiently fixes the REEs in regolith. Geomorphologically, the Bankeng deposit, like most of the other regolith-hosted REE deposits in South China, is located on concave-convex hillslopes, where erosion is prevalent at the ridgetop and decreases in intensity downslope. Results of this study show that strong erosion, coupled with intense chemical weathering at the ridgetop, is responsible for the enrichment in REEs by releasing the REEs, especially the LREEs, from their primary sources and supplying kaolinite and halloysite needed for the REE adsorption by decomposing albite, K-feldspar, and biotite. Decomposition of these major rock-forming minerals also leads to an enrichment of the REEs through the removal of components. The HREEs are lost preferentially to the groundwater and transported downslope, resulting in the enrichment of these elements in the lower part of the weathering crust at the footslope. Significant lateral Ce transport is also probable. A series of oxic fronts were developed at the footslope, with the most persistent one along the saprolite-saprock interface, due to seasonal fluctuations of the groundwater table. Cerium was immobilized there, predominantly through adsorption on Fe-Mn oxyhydroxides, causing enormous accumulation. Therefore, hillslope processes and groundwater flow could redistribute the REEs across the entire catchment, preferentially enriching the LREEs at the ridgetop and the HREEs at the footslope. Also, intense erosion facilitates chemical weathering and the accumulation of REEs, but the development of a thick weathering crust is favored by weak erosion. Repeated periods of high and low erosion rates in South China have enabled the gradual development of thick weathering crusts at the ridgetops that are sufficiently enriched in REEs to now constitute a major resource of these economically important elements.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3