Metal(loid) Deportment in Sulfides from the High-Grade Core of the Bingham Canyon Porphyry Cu-Mo-Au Deposit, Utah

Author:

Brodbeck M.1,McClenaghan S. H.1,Kamber B. S.12,Redmond P. B.3

Affiliation:

1. 1 Trinity College Dublin, iCRAG, Department of Geology, Dublin 2, Ireland

2. 2 School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane City, Queensland 4000, Australia

3. 3 Copper Mountain Mining Corporation, West Vancouver, British Columbia V6C 1G8, Canada

Abstract

Abstract Porphyry deposits supply the bulk of the world’s Cu and Mo and significant amounts of Au, as well as other minor and trace metal(loid)s, including Ag, Re, Te, Pd, Se, Bi, Zn, and Pb. Porphyry deposits are gaining in importance as a source of critical raw materials with the increasing global demand for these commodities. To date, minor and trace metal(loid)s are still commonly recovered as by-products from porphyry ores without prior characterization of their host mineralogy that could inform more efficient processing and improved recoveries. We report a comprehensive metal(loid) deportment study on a complete vein paragenetic series in samples from the northwestern high-grade zone of the Bingham Canyon Cu-Mo-Au porphyry deposit, Utah. The polyphase Bingham stock comprises an early premineralization equigranular monzonite phase that was intruded by a series of five successive, ore-related porphyry intrusions. Veins with hypogene Cu-(Fe) sulfide assemblages from all five porphyry intrusions were characterized for their trace metal(loid) contents by laser ablation-inductively coupled-mass spectrometry (LA-ICP-MS). It was found that bornite and digenite contain elevated Bi, Ag, Te, and Se relative to chalcopyrite, whereas the latter contains elevated concentrations of Co, Ga, and In. A stepwise decline in sulfide abundance occurs over the porphyry intrusion sequence and is more pronounced in digenite and bornite than in chalcopyrite. The related diminishing concentration per rock volume (inventory) of Bi, Ag, Te, and Se in the youngest porphyry dikes could have been caused in part by a geochemical change in the mineralizing fluid supply across successive intrusive-hydrothermal cycles. Element mapping of exsolved digenite within bornite revealed characterstic partitioning of metal(loid)s between bornite and digenite; most notably Ag, but also Te and Au are enriched in digenite relative to enclosing bornite. Bornite domains within these composite grains reveal complex zonation of Sn, In, and Bi, which are attributed to stress-induced diffusion within bornite, resulting from the digenite exsolution process. The selective partitioning of metal(loid)s between bornite and digenite is likely a common feature in many porphyry Cu deposits, given the fundamental mineralogical characteristics of these two sulfides. Our results contribute to an improved understanding of the distribution (from mineral to deposit scale) of critical trace metal(loid)s in porphyry deposits, particularly those containing exsolved digenite. This knowledge can be applied to determine more accurately the value of ore resources, to improve geometallurgical models and by-product recoveries, and to help limit the environmental effects of metal(loid) dispersion.

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

Reference78 articles.

1. A new mode of mineral replacement reactions involving the synergy between fluid-induced solid-state diffusion and dissolution-reprecipitation: A case study of the replacement of bornite by copper sulfides;Adegoke,2021

2. Gold-and silver-bearing assemblages in the Ann-Mason copper porphyry deposit, Yerington, Nevada;Aird;Ore Geology Reviews,2021

3. Skarn formation and mineralization in the contact aureole at Carr Fork, Bingham, Utah;Atkinson;Economic Geology,1978

4. Summary of the geology of the Bingham district, Utah: Arizona Geological Society;Babcock;Digest,1995

5. The growth of precipitates;Baker;Philosophical Magazine,1959

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3