The Characteristics and Origin of Barite in the Giant Mehdiabad Zn-Pb-Ba Deposit, Iran

Author:

Liu Yingchao1,Song Yucai1,Fard Mahmoud23,Hou Zengqian1,Ma Wang4,Yue Longlong1

Affiliation:

1. 1 Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 2 Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran

3. 3 Mining Investment Insurance Corporation of Iran, Tehran 1966883149, Iran

4. 4 School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

Abstract Mehdiabad is the world’s largest Mississippi Valley-type (MVT) Zn-Pb deposit (394 million tonnes [Mt] of metal ore at 4.2% Zn, 1.6% Pb) and contains significant barite resources (>40 Mt). Such large accumulations of barite are not common in carbonate-hosted Zn-Pb deposits. Therefore, the origin of the barite and its association with the Zn-Pb mineralization is of significant interest for further investigation. Field work and petrographic studies indicate that the Zn-Pb-Ba orebodies in the Mehdiabad deposit are hosted by Lower Cretaceous carbonate units of the Taft and Abkuh Formations. Fine- to coarse-grained barite with lesser siderite formed in three stages (S1, S2, and S4), along with a quartz-sulfide stage (S3) with minor quartz, sphalerite, galena, chalcopyrite, and pyrite, and the main Zn-Pb sulfide stage (S5) with massive sphalerite and galena. The barites have δ34S values from 17.7 to 20.6‰, δ18O values from 13.2 to 16.8‰, Δ33SV-CDT values from –0.001 to 0.036‰, and initial 87Sr/86Sr ratios from 0.707327 ± 0.000008 to 0.708593 ± 0.000008 (V-CDT = Vienna-Canyon Diablo Troilite). The siderites have δ13CV-PDB values from –3.8 to –2.7‰, and δ18OV-SMOW values from 18.2 to 20.9‰ (V-PDB = Vienna-Pee Dee Belemnite, V-SMOW = Vienna-standard mean ocean water). These geochemical data, and the barite morphology, point to a diagenetic origin for all stages of barite. We suggest that S1 and S2 barite precipitated from pore fluids at the sulfate-methane transition zone in a methane-diffusion-limited environment with increasing methane content. S4 barite precipitated when the methane- and barium-bearing cold-seep fluid migrated to the shallow carbonate sediments and formed a methane-in-excess setting. For the three stages, the SO42- in barite came from the residual SO42- in pore fluids undergoing sulfate-driven anaerobic oxidation of methane, and the Ba2+ came from dissolved biogenic barite and terrigenous materials in the Taft and Sangestan Formations. Primary fluid inclusions trapped in S3 quartz have salinities of 5.6 to 8.1 wt % NaCl equiv and homogenization temperatures of 143.8° to 166.1°C. The quartz has δ18OV-SMOW values ranging from 9.8 to 22.5‰ and δ30Si values from –1.3 to –0.9‰. These data indicate hydrothermal fluid flow occurred between the diagenetic S2 and S4 events. Secondary fluid inclusions with salinities of 17.70 to 19.13 wt % NaCl equiv and homogenization temperatures of 123.0° to 134.0°C are found in the S3 quartz, too. They might represent the hydrothermal event formed by basinal brines in S5. According to the ore textures and the comparison of the sulfur isotopes between S5 Zn-Pb sulfides and the digenetic barites, the barite provided a host and a sulfur source for the later Zn-Pb mineralization. The relationship between barite and the Zn-Pb mineralization indicates that significant accumulations of sulfates may be a critical exploration target for this kind of giant deposit.

Publisher

Society of Economic Geologists, Inc.

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3