Abstract
Coffee is an agricultural commodity of fundamental and considerable economic importance on the global market. In this study, the coffee bean varieties were examined from images via artificial intelligence due to their quality and value on the market. This study aims to create an automated system that can efficiently identify coffee beans without requiring a significant amount of time. In this study, five pre-trained Convolutional Neural Network (CNN) architectures were performed to detect four varieties of coffee beans through images. Extracting features from images is a challenging and specialized task. However, CNN possesses the ability to extract features automatically. Therefore, these architectures were employed as both deep feature extractors and classifiers. Primarily, 1600 coffee beans' images were split into 75:25 training and testing sets. Next, 5-fold cross-validation was applied during the training process. This study presented both validation and testing results. Eventually, ShuffleNet achieved the best classification performance with 99.33% and 99.75% accuracy rates in identifying types of coffee beans for the training and testing sets, respectively. As a result, this study has demonstrated that deep learning technologies can automatically recognize the different types of coffee beans.
Publisher
Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering
Reference25 articles.
1. De Oliveira, E. M., Leme, D. S., Barbosa, B. H. G., Rodarte, M. P., Pereira, R. G. F. A., A computer vision system for coffee beans classification based on computational intelligence techniques, J. Food Eng., 171 (2016), 22-27.
2. Gope, H. L., Fukai, H., Normal and pea berry coffee beans classification from green coffee bean images using convolutional neural networks and support vector machine, Int. J. Comput. Inf. Eng., 14 (6) (2020), 189-196.
3. Adiwijaya, N. O., Romadhon, H. I., Putra, J. A., Kuswanto, D. P., The quality of coffee bean classification system based on color by using k-nearest neighbor method, J. Phys.: Conference Series, 2157 (2022).
4. Vogt, M. A. B., Developing stronger association between market value of coffee and functional biodiversity, J. Environ. Manage., 269 (2020).
5. Buhrmester, V., Münch, D., Arens, M., Analysis of explainers of black box deep neural networks for computer vision: A survey, Mach. Learn. Knowl. Extr., 3 (4) (2021), 966-989.