Location-biased activation of the proton-sensor GPR65 is uncoupled from receptor trafficking

Author:

Morales Rodríguez Loyda M.1ORCID,Crilly Stephanie E.2,Rowe Jacob B.3ORCID,Isom Daniel G.345ORCID,Puthenveedu Manojkumar A.12ORCID

Affiliation:

1. Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109

2. Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109

3. The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136

4. Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136

5. Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL 33136

Abstract

The canonical view of G protein–coupled receptor (GPCR) function is that receptor trafficking is tightly coupled to signaling. GPCRs remain on the plasma membrane (PM) at the cell surface until they are activated, after which they are desensitized and internalized into endosomal compartments. This canonical view presents an interesting context for proton-sensing GPCRs because they are more likely to be activated in acidic endosomal compartments than at the PM. Here, we show that the trafficking of the prototypical proton-sensor GPR65 is fully uncoupled from signaling, unlike that of other known mammalian GPCRs. GPR65 internalizes and localizes to early and late endosomes, from where they signal at steady state, irrespective of extracellular pH. Acidic extracellular environments stimulate receptor signaling at the PM in a dose-dependent manner, although endosomal GPR65 is still required for a full signaling response. Receptor mutants that were incapable of activating cAMP trafficked normally, internalize and localize to endosomal compartments. Our results show that GPR65 is constitutively active in endosomes, and suggest a model where changes in extracellular pH reprograms the spatial pattern of receptor signaling and biases the location of signaling to the cell surface.

Funder

NSF | BIO | Division of Molecular and Cellular Biosciences

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute on Drug Abuse

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3