A universal description of stochastic oscillators

Author:

Pérez-Cervera Alberto1ORCID,Gutkin Boris2ORCID,Thomas Peter J.3ORCID,Lindner Benjamin45

Affiliation:

1. Department of Applied Mathematics, Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid 28040, Spain

2. Group for Neural Theory, LNC2 INSERM U960, Département d’Etudes Cognitives, Ecole Normale Supérieure - Paris Science Letters University, Paris 75005, France

3. Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106

4. Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany

5. Department of Physics, Humboldt Universität zu Berlin, Berlin D-12489, Germany

Abstract

Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced random component. Such stochastic oscillations can emerge via different mechanisms, for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phenomenology of random oscillations can be strikingly similar. Here, we introduce a nonlinear transformation of stochastic oscillators to a complex-valued function Q 1 * ( x ) that greatly simplifies and unifies the mathematical description of the oscillator’s spontaneous activity, its response to an external time-dependent perturbation, and the correlation statistics of different oscillators that are weakly coupled. The function Q 1 * ( x ) is the eigenfunction of the Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue λ 1 = μ 1 + 1 . The resulting power spectrum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency ω 1 and half-width μ 1 ; its susceptibility with respect to a weak external forcing is given by a simple one-pole filter, centered around ω 1 ; and the cross-spectrum between two coupled oscillators can be easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable, provides simple characteristics for the coherence of the random oscillation, and gives a framework for the description of weakly coupled oscillators.

Funder

NSF

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3