The ovalbumin serpins revisited: Perspective from the chicken genome of clade B serpin evolution in vertebrates

Author:

Benarafa Charaf1,Remold-O'Donnell Eileen1

Affiliation:

1. CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115

Abstract

Serpin superfamily proteins, most of which are serine protease inhibitors, share an unusual mechanism rooted in their conserved metastable tertiary structure. Although serpins have been identified in isolated members of archea, bacteria, and plants, a remarkable expansion is found in vertebrates. The chicken protein ovalbumin, a storage protein from egg white, lacking protease inhibitory activity, is an historical member of the superfamily and the founding member of the subgroup known as ov-serpins (ovalbumin-related serpins) or clade B serpins. In the human, ov-serpins include 13 proteins involved in the regulation of inflammation, apoptosis, angiogenesis, and embryogenesis. Here, a detailed analysis of the chicken ( Gallus gallus ) genome identified 10 clade B serpin genes that map to a single ≈150-kb locus and contain the signature protein sequence of serpins and the gene structure of ov-serpins, with either seven or eight exons. Orthologues of PAI-2 ( SERPINB2 ), MNEI ( SERPINB1 ), PI-6 ( SERPINB6 ), and maspin ( SERPINB5 ) are highly conserved. Comparison with human ov-serpins identified avian-specific and mammal-specific genes. Importantly, a unique model of mammalian ov-serpin evolution is revealed from the comparative analysis of the chicken and human loci. The presence of a subset of ov-serpin genes in zebrafish ( Danio rerio ) gives insight into the ancestral locus. This comparative genomic study provides a valuable perspective on the evolutionary pathway for the clade B serpins, allowing the identification of genes with functions that may have been conserved since the origin of vertebrates. In addition, it suggests that “newer” serpins, such as ovalbumin, have contributed to vertebrate adaptation.

Publisher

Proceedings of the National Academy of Sciences

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3