Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision

Author:

Boareto Marcelo,Jolly Mohit Kumar,Ben-Jacob Eshel,Onuchic José N.

Abstract

Angiogenesis is critical during development, wound repair, and cancer progression. During angiogenesis, some endothelial cells adopt a tip phenotype to lead the formation of new branching vessels; the trailing stalk cells proliferate to develop the vessel. Notch and VEGF signaling mediate the selection of these tip endothelial cells. However, how Jagged, a Notch ligand that is overexpressed in cancer, affects angiogenesis remains elusive. Here, by developing a theoretical framework for Notch-Delta-Jagged-VEGF signaling, we found that higher production levels of Jagged destabilizes the tip and stalk cell fates and can give rise to a hybrid tip/stalk phenotype that leads to poorly perfused and chaotic angiogenesis, which is a hallmark of cancer. Consistently, the signaling interactions that restrict Notch-Jagged signaling, such as Fringe, cis-inhibition, and increased production of Delta, stabilize tip and stalk fates and limit the existence of hybrid tip/stalk phenotype. Our results underline how overexpression of Jagged can transform physiological angiogenesis into pathological one.

Funder

National Science Foundation

Cancer Prevention and Research Institute of Texas

São Paulo Research Foundation

Tauber Family Funds

Maguy-Glass Chair in Physics of Complex Systems

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3