Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson’s disease

Author:

Fares Mohamed-Bilal,Maco Bohumil,Oueslati Abid,Rockenstein Edward,Ninkina Natalia,Buchman Vladimir L.,Masliah Eliezer,Lashuel Hilal A.

Abstract

Lewy bodies (LBs) are intraneuronal inclusions consisting primarily of fibrillized human α-synuclein (hα-Syn) protein, which represent the major pathological hallmark of Parkinson's disease (PD). Although doubling hα-Syn expression provokes LB pathology in humans, hα-Syn overexpression does not trigger the formation of fibrillar LB-like inclusions in mice. We hypothesized that interactions between exogenous hα-Syn and endogenous mouse synuclein homologs could be attenuating hα-Syn fibrillization in mice, and therefore, we systematically assessed hα-Syn aggregation propensity in neurons derived from α-Syn–KO, β-Syn–KO, γ-Syn–KO, and triple-KO mice lacking expression of all three synuclein homologs. Herein, we show that hα-Syn forms hyperphosphorylated (at S129) and ubiquitin-positive LB-like inclusions in primary neurons of α-Syn–KO, β-Syn–KO, and triple-KO mice, as well as in transgenic α-Syn–KO mouse brains in vivo. Importantly, correlative light and electron microscopy, immunogold labeling, and thioflavin-S binding established their fibrillar ultrastructure, and fluorescence recovery after photobleaching/photoconversion experiments showed that these inclusions grow in size and incorporate soluble proteins. We further investigated whether the presence of homologous α-Syn species would interfere with the seeding and spreading of α-Syn pathology. Our results are in line with increasing evidence demonstrating that the spreading of α-Syn pathology is most prominent when the injected preformed fibrils and host-expressed α-Syn monomers are from the same species. These findings provide insights that will help advance the development of neuronal and in vivo models for understanding mechanisms underlying hα-Syn intraneuronal fibrillization and its contribution to PD pathogenesis, and for screening pharmacologic and genetic modulators of α-Syn fibrillization in neurons.

Funder

Wellcome Trust

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3