Author:
Foster Patricia L.,Lee Heewook,Popodi Ellen,Townes Jesse P.,Tang Haixu
Abstract
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensalEscherichia colistrains differ only by about 50%, suggesting that a rate of 1–2 × 10−3mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold.
Funder
DOD | Army Research Office
Publisher
Proceedings of the National Academy of Sciences
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献