New roles for DNA cytosine modification, eRNA, anchors, and superanchors in developing B cell progenitors

Author:

Benner Christopher,Isoda Takeshi,Murre Cornelis

Abstract

B-cell fate is orchestrated by a series of well-characterized developmental regulators. Here, we found that the onset of B-cell development was accompanied by large-scale changes in DNA cytosine modifications associated with promoters, enhancers, and anchors. These changes were tightly linked to alterations in transcription factor occupancy and nascent RNA (eRNA) transcription. We found that the prepro-B to the pro–B-cell transition was associated with a global exchange of DNA cytosine modifications for polycomb-mediated repression at CpG islands. Hypomethylated regions were found exclusively in the active/permissive compartment of the nucleus and were predominantly associated with regulatory elements or anchors that orchestrate the folding patterns of the genome. We identified superanchors, characterized by clusters of hypomethylated CCCTC-binding factor (CTCF)-bound elements, which were predominantly located at boundaries that define topological associated domains. A particularly prominent hypomethylated superanchor was positioned down-stream of the Ig heavy chain (Igh) locus. Analysis of global formaldehyde–cross-linking studies indicated that the Igh locus superanchor interacts with the VH region repertoire across vast genomic distances. We propose that the Igh locus superanchor sequesters the VH and DHJH regions into a spatial confined geometric environment to promote rapid first-passage times. Collectively, these studies demonstrate how, in developing B cells, DNA cytosine modifications associated with regulatory and architectural elements affect patterns of gene expression, folding patterns of the genome, and antigen receptor assembly.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3