The unreasonable effectiveness of deep learning in artificial intelligence

Author:

Sejnowski Terrence J.ORCID

Abstract

Deep learning networks have been trained to recognize speech, caption photographs, and translate text between languages at high levels of performance. Although applications of deep learning networks to real-world problems have become ubiquitous, our understanding of why they are so effective is lacking. These empirical results should not be possible according to sample complexity in statistics and nonconvex optimization theory. However, paradoxes in the training and effectiveness of deep learning networks are being investigated and insights are being found in the geometry of high-dimensional spaces. A mathematical theory of deep learning would illuminate how they function, allow us to assess the strengths and weaknesses of different network architectures, and lead to major improvements. Deep learning has provided natural ways for humans to communicate with digital devices and is foundational for building artificial general intelligence. Deep learning was inspired by the architecture of the cerebral cortex and insights into autonomy and general intelligence may be found in other brain regions that are essential for planning and survival, but major breakthroughs will be needed to achieve these goals.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference38 articles.

1. E. A. Abbott , Flatland: A Romance in Many Dimensions (Seeley & Co., London, 1884).

2. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)

3. N. Chomsky , Knowledge of Language: Its Nature, Origins, and Use (Convergence, Praeger, Westport, CT, 1986).

4. T. J. Sejnowski , The Deep Learning Revolution: Artificial Intelligence Meets Human Intelligence (MIT Press, Cambridge, MA, 2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3