Membraneless polyester microdroplets as primordial compartments at the origins of life

Author:

Jia Tony Z.ORCID,Chandru Kuhan,Hongo Yayoi,Afrin Rehana,Usui Tomohiro,Myojo Kunihiro,Cleaves H. JamesORCID

Abstract

Compartmentalization was likely essential for primitive chemical systems during the emergence of life, both for preventing leakage of important components, i.e., genetic materials, and for enhancing chemical reactions. Although life as we know it uses lipid bilayer-based compartments, the diversity of prebiotic chemistry may have enabled primitive living systems to start from other types of boundary systems. Here, we demonstrate membraneless compartmentalization based on prebiotically available organic compounds, α-hydroxy acids (αHAs), which are generally coproduced along with α-amino acids in prebiotic settings. Facile polymerization of αHAs provides a model pathway for the assembly of combinatorially diverse primitive compartments on early Earth. We characterized membraneless microdroplets generated from homo- and heteropolyesters synthesized from drying solutions of αHAs endowed with various side chains. These compartments can preferentially and differentially segregate and compartmentalize fluorescent dyes and fluorescently tagged RNA, providing readily available compartments that could have facilitated chemical evolution by protecting, exchanging, and encapsulating primitive components. Protein function within and RNA function in the presence of certain droplets is also preserved, suggesting the potential relevance of such droplets to various origins of life models. As a lipid amphiphile can also assemble around certain droplets, this further shows the droplets’ potential compatibility with and scaffolding ability for nascent biomolecular systems that could have coexisted in complex chemical systems. These model compartments could have been more accessible in a “messy” prebiotic environment, enabling the localization of a variety of protometabolic and replication processes that could be subjected to further chemical evolution before the advent of the Last Universal Common Ancestor.

Funder

Tokyo Institute of Technology

MEXT | Japan Society for the Promotion of Science

Japan Astrobiology Center

European Structural and Investment Funds

Research Development Fund UKM

John Templeton Foundation

Earth-Life Science Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference54 articles.

1. Synthesizing life

2. Enhanced Chemical Synthesis at Soft Interfaces: A Universal Reaction-Adsorption Mechanism in Microcompartments

3. B. Alberts , A. Johnson , J. Lewis , K. Roberts , P. Walter , Eds., “The lipid bilayer” in Molecular Biology of the Cell (Garland Science, New York, 2002). https://www.ncbi.nlm.nih.gov/books/NBK26871/. Accessed 1 November 2018.

4. Prebiotic chemistry: What we know, what we don’t;Cleaves;Evol. Educ. Outreach,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3