Deep learning in turbulent convection networks

Author:

Fonda Enrico,Pandey Ambrish,Schumacher Jörg,Sreenivasan Katepalli R.

Abstract

We explore heat transport properties of turbulent Rayleigh–Bénard convection in horizontally extended systems by using deep-learning algorithms that greatly reduce the number of degrees of freedom. Particular attention is paid to the slowly evolving turbulent superstructures—so called because they are larger in extent than the height of the convection layer—which appear as temporal patterns of ridges of hot upwelling and cold downwelling fluid, including defects where the ridges merge or end. The machine-learning algorithm trains a deep convolutional neural network (CNN) with U-shaped architecture, consisting of a contraction and a subsequent expansion branch, to reduce the complex 3D turbulent superstructure to a temporal planar network in the midplane of the layer. This results in a data compression by more than five orders of magnitude at the highest Rayleigh number, and its application yields a discrete transport network with dynamically varying defect points, including points of locally enhanced heat flux or “hot spots.” One conclusion is that the fraction of heat transport by the superstructure decreases as the Rayleigh number increases (although they might remain individually strong), correspondingly implying the increased importance of small-scale background turbulence.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3