Author:
Allen Monica,Cui Yongtao,Yue Ma Eric,Mogi Masataka,Kawamura Minoru,Fulga Ion Cosma,Goldhaber-Gordon David,Tokura Yoshinori,Shen Zhi-Xun
Abstract
Quantum-relativistic materials often host electronic phenomena with exotic spatial distributions. In particular, quantum anomalous Hall (QAH) insulators feature topological boundary currents whose chirality is determined by the magnetization orientation. However, understanding the microscopic nature of edge vs. bulk currents has remained a challenge due to the emergence of multidomain states at the phase transitions. Here we use microwave impedance microscopy (MIM) to directly image chiral edge currents and phase transitions in a magnetic topological insulator. Our images reveal a dramatic change in the edge state structure and an unexpected microwave response at the topological phase transition between the Chern number N=1 and N=−1 states, consistent with the emergence of an insulating N=0 state. The magnetic transition width is independent of film thickness, but the transition pattern is distinct in differently initiated field sweeps. This behavior suggests that the N=0 state has 2 surface states with Hall conductivities of 12e2/h but with opposite signs.
Publisher
Proceedings of the National Academy of Sciences
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献