The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis.

Author:

Nagiec M M1,Baltisberger J A1,Wells G B1,Lester R L1,Dickson R C1

Affiliation:

1. Department of Biochemistry, University of Kentucky, Lexington 40536-0084.

Abstract

The first and committed step in synthesis of the ceramide moiety of sphingolipids is catalyzed by serine palmitoyltransferase (EC 2.3.1.50), which condenses palmitoyl-CoA and serine to form 3-ketosphinganine. This step is thought to be tightly regulated to control the synthesis of sphingolipids, but data supporting this hypothesis are lacking mainly because the enzyme has resisted purification and consequent characterization. Rather than attempting to purify the enzyme from normal cells, we have taken a different tack and opted to try and overproduce the enzyme to facilitate its purification. Here we demonstrate that overproduction in Saccharomyces cerevisiae requires expression of LCB1, a previously isolated yeast gene, and LCB2, the isolation and characterization of which we describe. Several lines of evidence argue that both genes encode subunits of the enzyme; however, biochemical evidence will be needed to substantiate this hypothesis. Although overproduction was modest, 2- to 4-fold, it should now be possible to devise improved overproduction vectors for yeast or other host organisms.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3