Human ERG oncoprotein represses a Drosophila LIM domain binding protein–coding gene Chip

Author:

Bharti Mahima1ORCID,Bajpai Anjali12,Rautela Umanshi13,Manzar Nishat1ORCID,Ateeq Bushra12ORCID,Sinha Pradip12ORCID

Affiliation:

1. Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016

2. Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016

3. National Institute of Immunology, India, 110067

Abstract

Human E TS R elated G ene, ERG, a master transcription factor, turns oncogenic upon its out-of-context activation in diverse developmental lineages. However, the mechanism underlying its lineage-specific activation of Notch (N), Wnt, or EZH2—three well-characterized oncogenic targets of ERG—remains elusive. We reasoned that deep homology in genetic tool kits might help uncover such elusive cancer mechanisms in Drosophila . By heterologous gain of human ERG in Drosophila , here we reveal Chip, which codes for a transcriptional coactivator, LIM-domain-binding (LDB) protein, as its novel target. ERG represses Drosophila Chip via its direct binding and, indirectly, via E(z)-mediated silencing of its promoter. Downregulation of Chip disrupts LIM–HD complex formed between Chip and Tailup (Tup)—a LIM–HD transcription factor—in the developing notum. A consequent activation of N-driven Wg signaling leads to notum-to-wing transdetermination. These fallouts of ERG gain are arrested upon a simultaneous gain of Chip, sequestration of Wg ligand, and, alternatively, loss of N signaling or E(z) activity. Finally, we show that the human LDB1 , a homolog of Drosophila Chip , is repressed in ERG-positive prostate cancer cells. Besides identifying an elusive target of human ERG, our study unravels an underpinning of its lineage-specific carcinogenesis.

Funder

DST | Science and Engineering Research Board

The Wellcome Trust DBT India Alliance

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3