Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors

Author:

Bartók Ádám123ORCID,Csanády László123ORCID

Affiliation:

1. Hungarian Centre of Excellence for Molecular Medicine-Semmelweis Egyetem (HCEMM-SE) Molecular Channelopathies Research Group, Semmelweis University, Budapest H-1094, Hungary

2. Magyar Tudományos Akadémia-Semmelweis Egyetem (MTA-SE) Ion Channel Research Group, Semmelweis University, Budapest H-1094, Hungary

3. Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary

Abstract

The Ca 2+ and ADP ribose (ADPR)-activated cation channel TRPM2 is the closest homolog of the cold sensor TRPM8 but serves as a deep-brain warmth sensor. To unravel the molecular mechanism of heat sensing by the TRPM2 protein, we study here temperature dependence of TRPM2 currents in cell-free membrane patches across ranges of agonist concentrations. We find that channel gating remains strictly agonist-dependent even at 40°C: heating alone or in combination with just Ca 2+ , just ADPR, Ca 2+ + cyclic ADPR, or H 2 O 2 pretreatment only marginally activates TRPM2. For fully liganded TRPM2, pore opening is intrinsically endothermic, due to ~10-fold larger activation enthalpy for opening (~200 kJ/mol) than for closure (~20 kJ/mol). However, the temperature threshold is too high (>40°C) for unliganded but too low (<15°C) for fully liganded channels. Thus, warmth sensitivity around 37°C is restricted to narrow ranges of agonist concentrations. For ADPR, that range matches, but for Ca 2+ , it exceeds bulk cytosolic values. The supraphysiological [Ca 2+ ] needed for TRPM2 warmth sensitivity is provided by Ca 2+ entering through the channel’s pore. That positive feedback provides further strong amplification to the TRPM2 temperature response (Q 10 ~ 1,000), enabling the TRPM2 protein to autonomously respond to tiny temperature fluctuations around 37°C. These functional data together with published structures suggest a molecular mechanism for opposite temperature dependences of two closely related channel proteins.

Funder

Magyar Tudományos Akadémia

EC | Horizon 2020 Research and Innovation Program

Emberi Eroforrások Minisztériuma

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3