Faulty TRPM4 channels underlie age-dependent cerebral vascular dysfunction in Gould syndrome

Author:

Yamasaki Evan1ORCID,Ali Sher1ORCID,Sanchez Solano Alfredo1ORCID,Thakore Pratish1,Smith Megan2ORCID,Wang Xiaowei2,Labelle-Dumais Cassandre2ORCID,Gould Douglas B.23ORCID,Earley Scott1ORCID

Affiliation:

1. Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318

2. Departments of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94158

3. Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, UCSF School of Medicine, San Francisco, CA 94158

Abstract

Gould syndrome is a rare multisystem disorder resulting from autosomal dominant mutations in the collagen-encoding genes COL4A1 and COL4A2. Human patients and Col4a1 mutant mice display brain pathology that typifies cerebral small vessel diseases (cSVDs), including white matter hyperintensities, dilated perivascular spaces, lacunar infarcts, microbleeds, and spontaneous intracerebral hemorrhage. The underlying pathogenic mechanisms are unknown. Using the Col4a1 +/G394V mouse model, we found that vasoconstriction in response to internal pressure—the vascular myogenic response—is blunted in cerebral arteries from middle-aged (12 mo old) but not young adult (3 mo old) animals, revealing age-dependent cerebral vascular dysfunction. The defect in the myogenic response was associated with a significant decrease in depolarizing cation currents conducted by TRPM4 (transient receptor potential melastatin 4) channels in native cerebral artery smooth muscle cells (SMCs) isolated from mutant mice. The minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP 2 ) is necessary for TRPM4 activity. Dialyzing SMCs with PIP 2 and selective blockade of phosphoinositide 3-kinase (PI3K), an enzyme that converts PIP 2 to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP 3 ), restored TRPM4 currents. Acute inhibition of PI3K activity and blockade of transforming growth factor-beta (TGF-β) receptors also rescued the myogenic response, suggesting that hyperactivity of TGF-β signaling pathways stimulates PI3K to deplete PIP 2 and impair TRPM4 channels. We conclude that age-related cerebral vascular dysfunction in Col4a1 +/G394V mice is caused by the loss of depolarizing TRPM4 currents due to PIP 2 depletion, revealing an age-dependent mechanism of cSVD.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3