Molecular and biological characterization of a replication competent human immunodeficiency type 2 (HIV-2) proviral clone.

Author:

Franchini G1,Fargnoli K A1,Giombini F1,Jagodzinski L1,De Rossi A1,Bosch M1,Biberfeld G1,Fenyo E M1,Albert J1,Gallo R C1

Affiliation:

1. Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, MD 20892.

Abstract

We obtained complete genomic clones of human immunodeficiency virus type 2 (HIV-2) from the DNA of the neoplastic human cell line HUT 78 freshly infected with a HIV-2 isolate, strain SBL6669. The recombinant phage DNA was transfected into the lymphocytes of CD4-positive HUT 78 cell line to test the replication competence of the proviral DNA. One genomic clone, designated HIV-2SBL/ISY, yielded retroviral particles after a few weeks of culture of the transfected cells. The HIV-2SBL/ISY clone contained a complete provirus and cellular flanking sequence. We obtained the DNA sequence of the provirus and compared it with the published sequence of two other HIV-2 isolates. The degree of variability among HIV-2 isolates is comparable to that observed among African HIV-1 isolates sequenced to date. Immunologically, HIV-2SBL/ISY is similar to the parental virus (HIV-2SBL6669) but differs in the envelope transmembrane protein that is truncated (gp32-34) in the parental virus and not in HIV-2SBL/ISY (gp41). Both the parental and the cloned viruses are infectious and cytopathic for some human T-cell lines, induce syncytia, and infect a human macrophage cell line (U937) in vitro. The availability of a biologically active HIV-2 clone provides the means to study the role and interaction of HIV-2 genes in vitro as well as to assess the functional similarities among HIV-1 and HIV-2 genes. Since HIV-2SBL/ISY cloned virus infects fresh peripheral blood T cells from Rhesus macaques in vitro and infects the same animal in vivo, its use in animals may represent a model for functional study of viral genes in vivo as well as for development of experimental approaches to prevent and cure retroviral infection in humans.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3