Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26.

Author:

Habenicht A J1,Goerig M1,Rothe D E1,Specht E1,Ziegler R1,Glomset J A1,Graf T1

Affiliation:

1. University of Heidelberg, Federal Republic of Germany.

Abstract

We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3