Pulsatile basal gene expression as a fitness determinant in bacteria

Author:

Jain K.1ORCID,Hauschild R.1ORCID,Bochkareva O. O.1ORCID,Roemhild R.1ORCID,Tkačik G.1ORCID,Guet C. C.1ORCID

Affiliation:

1. Institute of Science and Technology Austria

Abstract

Active regulation of gene expression, orchestrated by complex interactions of activators and repressors at promoters, controls the fate of organisms. In contrast, basal expression at uninduced promoters is considered to be a dynamically inert mode of nonfunctional “promoter leakiness,” merely a byproduct of transcriptional regulation. Here, we investigate the basal expression mode of the mar operon, the main regulator of intrinsic multiple antibiotic resistance in Escherichia coli , and link its dynamic properties to the noncanonical, yet highly conserved start codon of marR across Enterobacteriaceae . Real-time, single-cell measurements across tens of generations reveal that basal expression consists of rare stochastic gene expression pulses, which maximize variability in wildtype and, surprisingly, transiently accelerate cellular elongation rates. Competition experiments show that basal expression confers fitness advantages to wildtype across several transitions between exponential and stationary growth by shortening lag times. The dynamically rich basal expression of the mar operon has likely been evolutionarily maintained for its role in growth homeostasis of Enterobacteria within the gut environment, thereby allowing other ancillary gene regulatory roles to evolve, e.g., control of costly-to-induce multidrug efflux pumps. Understanding the complex selection forces governing genetic systems involved in intrinsic multidrug resistance is crucial for effective public health measures.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3