Affiliation:
1. Institute of Science and Technology Austria
Abstract
Active regulation of gene expression, orchestrated by complex interactions of activators and repressors at promoters, controls the fate of organisms. In contrast, basal expression at uninduced promoters is considered to be a dynamically inert mode of nonfunctional “promoter leakiness,” merely a byproduct of transcriptional regulation. Here, we investigate the basal expression mode of the
mar
operon, the main regulator of intrinsic multiple antibiotic resistance in
Escherichia coli
, and link its dynamic properties to the noncanonical, yet highly conserved start codon of
marR
across
Enterobacteriaceae
. Real-time, single-cell measurements across tens of generations reveal that basal expression consists of rare stochastic gene expression pulses, which maximize variability in wildtype and, surprisingly, transiently accelerate cellular elongation rates. Competition experiments show that basal expression confers fitness advantages to wildtype across several transitions between exponential and stationary growth by shortening lag times. The dynamically rich basal expression of the
mar
operon has likely been evolutionarily maintained for its role in growth homeostasis of Enterobacteria within the gut environment, thereby allowing other ancillary gene regulatory roles to evolve, e.g., control of costly-to-induce multidrug efflux pumps. Understanding the complex selection forces governing genetic systems involved in intrinsic multidrug resistance is crucial for effective public health measures.
Publisher
Proceedings of the National Academy of Sciences