Galvanotactic directionality of cell groups depends on group size

Author:

Copos Calina12ORCID,Sun Yao-Hui34ORCID,Zhu Kan34ORCID,Zhang Yan5,Reid Brian34,Draper Bruce6ORCID,Lin Francis7,Yue Haicen8,Bernadskaya Yelena910,Zhao Min34ORCID,Mogilner Alex910ORCID

Affiliation:

1. Department of Biology, Northeastern University

2. Department of Mathematics, Northeastern University

3. Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis

4. Department of Dermatology, School of Medicine, University of California, Davis

5. Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health

6. Department of Molecular and Cellular Biology, University of California, Davis

7. Department of Physics and Astronomy, University of Manitoba

8. Department of Physics, University of Vermont

9. Courant Institute, New York University

10. Department of Biology, New York University

Abstract

Motile cells migrate directionally in the electric field (EF) in a process known as galvanotaxis, an important phenomenon in wound healing and development. We previously reported that individual fish keratocyte cells migrate to the cathode in EFs, that inhibition of PI3 kinase (PI3K) reverses single cells to the anode, and that large cohesive groups of either unperturbed or PI3K-inhibited cells migrate to the cathode. Here, we report that small uninhibited cell groups move to the cathode, while small groups of PI3K-inhibited cells move to the anode. Small groups move faster than large groups, and groups of unperturbed cells move faster than PI3K-inhibited cell groups of comparable sizes. The shapes and sizes of large groups change little when they start migrating, while size and shapes of small groups change significantly, and lamellipodia disappear from the rear edges of these groups. The computational model, according to which cells inside and at the edge of the group interpret directional signals differently, explains the observations. Namely, cells in the group interior are directed to the cathode independently whether they are PI3K-inhibited or not. Meanwhile, the edge cells behave like individual cells: They are directed to the cathode in uninhibited groups and to the anode in PI3K-inhibited groups. As a result, all cells drive uninhibited groups to the cathode, while larger PI3K-inhibited groups are directed by cell majority in the group interior to the cathode, while majority of the edge cells in small groups win the tug-of-war driving these groups to the anode.

Funder

NSF

DOD | USA | AFC | CCDC | Army Research Office

DOD | AF | AMC | AFRL | Air Force Office of Scientific Research

HHS | NIH

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3