Dynamics of Drosophila endoderm specification

Author:

Keenan Shannon E.12,Avdeeva Maria3ORCID,Yang Liu2,Alber Daniel S.12ORCID,Wieschaus Eric F.24,Shvartsman Stanislav Y.234

Affiliation:

1. Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540

2. The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540

3. Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010

4. Department of Molecular Biology, Princeton University, Princeton, NJ 08540

Abstract

Significance To understand developmental patterning of an organism, it is necessary to accurately measure how the state of a gene regulatory network is changing over time. One way of extracting dynamics of a network involves simultaneously imaging several reporters within fixed tissue. Reconstructing dynamics from such data requires staging many samples over time and often leads to low temporal resolution. Time-lapse microscopy of fluorescent transcriptional reporters has revolutionized studies of biological dynamics at the single-cell level. However, this method is limited by the number of reporters that can be imaged at one time. We present a computational method for addressing this problem and demonstrate its application by modeling the gene regulatory network underlying Drosophila posterior patterning and reconstructing its developmental dynamics.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3