Cheap robust learning of data anomalies with analytically solvable entropic outlier sparsification

Author:

Horenko Illia1

Affiliation:

1. Faculty of Informatics, Institute of Computing, Universitá della Svizzera Italiana, TI-6900 Lugano, Switzerland

Abstract

Entropic outlier sparsification (EOS) is proposed as a cheap and robust computational strategy for learning in the presence of data anomalies and outliers. EOS dwells on the derived analytic solution of the (weighted) expected loss minimization problem subject to Shannon entropy regularization. An identified closed-form solution is proven to impose additional costs that depend linearly on statistics size and are independent of data dimension. Obtained analytic results also explain why the mixtures of spherically symmetric Gaussians—used heuristically in many popular data analysis algorithms—represent an optimal and least-biased choice for the nonparametric probability distributions when working with squared Euclidean distances. The performance of EOS is compared to a range of commonly used tools on synthetic problems and on partially mislabeled supervised classification problems from biomedicine. Applying EOS for coinference of data anomalies during learning is shown to allow reaching an accuracy of 97 % ± 2 % when predicting patient mortality after heart failure, statistically significantly outperforming predictive performance of common learning tools for the same data.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference17 articles.

1. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness

2. Identification of Outliers in Multivariate Data

3. Outlier identification in high dimensions

4. Progress in Outlier Detection Techniques: A Survey

5. W. A. Stahel “Robust estimation: Infinitesimal optimality and covariance matrix estimators ” PhD thesis Eidgenossische Technische Hochschule (ETH) Zurich Zurich Switzerland (1981).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3