Fermionic wave functions from neural-network constrained hidden states

Author:

Robledo Moreno Javier12ORCID,Carleo Giuseppe34,Georges Antoine1567ORCID,Stokes James18

Affiliation:

1. Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010

2. Center for Quantum Phenomena, Department of Physics, New York University, New York, NY 10003

3. Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

4. Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

5. Collège de France, 75005 Paris, France

6. Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France

7. Department of Quantum Matter Physics, University of Geneva, 1211 Geneva 4, Switzerland

8. Center for Computational Mathematics, Flatiron Institute, New York, NY 10010

Abstract

We introduce a systematically improvable family of variational wave functions for the simulation of strongly correlated fermionic systems. This family consists of Slater determinants in an augmented Hilbert space involving “hidden” additional fermionic degrees of freedom. These determinants are projected onto the physical Hilbert space through a constraint that is optimized, together with the single-particle orbitals, using a neural network parameterization. This construction draws inspiration from the success of hidden-particle representations but overcomes the limitations associated with the mean-field treatment of the constraint often used in this context. Our construction provides an extremely expressive family of wave functions, which is proved to be universal. We apply this construction to the ground-state properties of the Hubbard model on the square lattice, achieving levels of accuracy that are competitive with those of state-of-the-art variational methods.

Funder

Simons Foundation

Swiss National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference51 articles.

1. The classical limit of quantum spin systems

2. Approximation algorithms for quantum many-body problems

3. K. Hyatt E. M. Stoudenmire DMRG approach to optimizing two-dimensional tensor networks. arXiv [Preprint] (2020). https://arxiv.org/abs/1908.08833 (Accessed 18 July 2022).

4. Two-dimensional frustrated J1−J2 model studied with neural network quantum states

5. Fermionic neural-network states for ab-initio electronic structure

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3