Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks

Author:

Mock Florian1ORCID,Kretschmer Fleming2ORCID,Kriese Anton3ORCID,Böcker Sebastian2ORCID,Marz Manja1456ORCID

Affiliation:

1. RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany

2. Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany

3. Institute for Computer Science, Freie Universität Berlin, 14195 Berlin, Germany

4. Bioinformatics Core Facility, Friedrich Schiller University Jena, 07743 Jena, Germany

5. Institute for Computer Science, Leibniz Institute for Age Research – Fritz Lippman Institute, 07745 Jena, Germany

6. European Virus Bioinformatics Center, 07743 Jena, Germany

Abstract

Taxonomic classification, that is, the assignment to biological clades with shared ancestry, is a common task in genetics, mainly based on a genome similarity search of large genome databases. The classification quality depends heavily on the database, since representative relatives must be present. Many genomic sequences cannot be classified at all or only with a high misclassification rate. Here we present BERTax, a deep neural network program based on natural language processing to precisely classify the superkingdom and phylum of DNA sequences taxonomically without the need for a known representative relative from a database. We show BERTax to be at least on par with the state-of-the-art approaches when taxonomically similar species are part of the training data. For novel organisms, however, BERTax clearly outperforms any existing approach. Finally, we show that BERTax can also be combined with database approaches to further increase the prediction quality in almost all cases. Since BERTax is not based on similar entries in databases, it allows precise taxonomic classification of a broader range of genomic sequences, thus increasing the overall information gain.

Funder

Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft

Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3