Widespread seawater intrusions beneath the grounded ice of Thwaites Glacier, West Antarctica

Author:

Rignot Eric123ORCID,Ciracì Enrico1ORCID,Scheuchl Bernd1ORCID,Tolpekin Valentyn4ORCID,Wollersheim Michael4ORCID,Dow Christine5

Affiliation:

1. Department of Earth System Science, University of California, Irvine, CA 92697

2. Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

3. Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697

4. ICEYE Oy, 02150 Espoo, Uusimaa 02150, Finland

5. Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

Warm water from the Southern Ocean has a dominant impact on the evolution of Antarctic glaciers and in turn on their contribution to sea level rise. Using a continuous time series of daily-repeat satellite synthetic-aperture radar interferometry data from the ICEYE constellation collected in March–June 2023, we document an ice grounding zone, or region of tidally controlled migration of the transition boundary between grounded ice and ice afloat in the ocean, at the main trunk of Thwaites Glacier, West Antarctica, a strong contributor to sea level rise with an ice volume equivalent to a 0.6-m global sea level rise. The ice grounding zone is 6 km wide in the central part of Thwaites with shallow bed slopes, and 2 km wide along its flanks with steep basal slopes. We additionally detect irregular seawater intrusions, 5 to 10 cm in thickness, extending another 6 km upstream, at high tide, in a bed depression located beyond a bedrock ridge that impedes the glacier retreat. Seawater intrusions align well with regions predicted by the GlaDS subglacial water model to host a high-pressure distributed subglacial hydrology system in between lower-pressure subglacial channels. Pressurized seawater intrusions will induce vigorous melt of grounded ice over kilometers, making the glacier more vulnerable to ocean warming, and increasing the projections of ice mass loss. Kilometer-wide, widespread seawater intrusion beneath grounded ice may be the missing link between the rapid, past, and present changes in ice sheet mass and the slower changes replicated by ice sheet models.

Funder

National Aeronautics and Space Administration

NASA | National Aeronautics and Space Administration Postdoctoral Program

National Science Foundation

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Proceedings of the National Academy of Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3