Monitoring resilience in bursts

Author:

Delecroix Clara1ORCID,van Nes Egbert H.1ORCID,Scheffer Marten1ORCID,van de Leemput Ingrid A.1ORCID

Affiliation:

1. Department of Environmental Sciences, Wageningen University and Research, Wageningen 6700 AA, The Netherlands

Abstract

The possibility to anticipate critical transitions through detecting loss of resilience has attracted attention in many fields. Resilience indicators rely on the mathematical concept of critical slowing down, which means that a system recovers more slowly from external perturbations when it gets closer to tipping point. This decrease in recovery rate can be reflected in rising autocorrelation and variance in data. To test whether resilience is changing, resilience indicators are often calculated using a moving window in long, continuous time series of the system. However, for some systems, it may be more feasible to collect several high-resolution time series in short periods of time, i.e., in bursts. Resilience indicators can then be calculated to detect a change of resilience between such bursts. Here, we compare the performance of both methods using simulated data and showcase the possible use of bursts in a case study using mood data to anticipate depression in a patient. With the same number of data points, the burst approach outperformed the moving window method, suggesting that it is possible to downsample the continuous time series and still signal an upcoming transition. We suggest guidelines to design an optimal sampling strategy. Our results imply that using bursts of data instead of continuous time series may improve the capacity to detect changes in resilience. This method is promising for a variety of fields, such as human health, epidemiology, or ecology, where continuous monitoring can be costly or unfeasible.

Funder

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3