Real-time single-molecule observation of incipient collagen fibrillogenesis and remodeling

Author:

Roth Jonathan1,Hoop Cody1,Williams Jonathan K.1,Nanda Vikas23,Baum Jean1

Affiliation:

1. Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854

2. Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854

3. Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854

Abstract

The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.

Funder

HHS | NIH

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3