Restoring neuronal iron homeostasis revitalizes neurogenesis after spinal cord injury

Author:

Geng Huimin12,Li Zhiwei23,Li Zheng23,Zhang Yuqi2,Gao Zhiliang1,Sun Lei4,Li Xingang2,Cui Jiwei1ORCID,Ni Shilei23,Hao Jingcheng1ORCID

Affiliation:

1. Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China

2. Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China

3. Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250117, China

4. Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China

Abstract

Spinal cord injury (SCI) can lead to iron overloading and subsequent neuronal ferroptosis, which hinders the recovery of locomotor function. However, it is still unclear whether the maintenance of neuronal iron homeostasis enables to revitalize intrinsic neurogenesis. Herein, we report the regulation of cellular iron homeostasis after SCI via the chelation of excess iron ions and modulation of the iron transportation pathway using polyphenol-based hydrogels for the revitalization of intrinsic neurogenesis. The reversed iron overloading can promote neural stem/progenitor cell differentiation into neurons and elicit the regenerative potential of newborn neurons, which is accompanied by improved axon reinnervation and remyelination. Notably, polyphenol-based hydrogels significantly increase the neurological motor scores from ~8 to 18 (out of 21) and restore the transmission of sensory and motor electrophysiological signals after SCI. Maintenance of iron homeostasis at the site of SCI using polyphenol-based hydrogels provides a promising paradigm to revitalize neurogenesis for the treatment of iron accumulation-related nervous system diseases.

Funder

MOST | National Natural Science Foundation of China

Innovation Project of Jinan Science and Technology Bureau

山东省科学技术厅 | Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3