The essence of phase transitions in condensed matter by an information theoretic approach

Author:

Raz T.1,Levine R. D.234ORCID

Affiliation:

1. Azrieli College of Engineering, Jerusalem 91035, Israel

2. The Fritz Haber Research Centre for Molecular Dynamics, Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel

3. Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA 90095

4. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

Abstract

Our information theoretic considerations suggest that the essence of phase transitions in condensed matter is the change in entropy as reflected in the change in the number of isomers between two phases. The explicit number of isomers as a function of size is computed using a graph theoretic approach that is compared to a direct count for smaller systems. This allows us to apply a common approach to both nanosystems and their macroscopic limit. The entropy increases very rapidly with size with the results that replacing the actual distribution over size by an average is not an accurate approximation. That the phase transition is a sharp function of the temperature is due to the high heat capacity of both the solid and liquid phases. The difference in entropy at the transition is related to the Trouton–Richards considerations. The finite width of the boundary between two phases of a finite system is related to the inherent uncertainty product that is derived from the maximum entropy formalism and that is a result of the fluctuations about equilibrium. As the system size increases, the boundary becomes sharper and one recovers the usual thermodynamic description.

Funder

HHS | NIH | National Cancer Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3