Low- and high-frequency vibrations synergistically enhance singlet exciton fission through robust vibronic resonances

Author:

Bhattacharyya Atandrita1ORCID,Sahu Amitav1ORCID,Patra Sanjoy1,Tiwari Vivek1

Affiliation:

1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Abstract

Singlet exciton fission (SEF) is initiated by ultrafast internal conversion of a singlet exciton into a correlated triplet pair ( T T ) 1 . The “reaction coordinates” for ultrafast SEF even in archetypal systems such as pentacene thin film remain unclear. Couplings between fast electrons and slow nuclei are ubiquitous across a range of phenomena in chemistry. Accordingly, spectroscopic detection of vibrational coherences in the ( T T ) 1 photoproduct motivated investigations into a possible role of vibronic coupling, akin to that reported in several photosynthetic proteins. However, acenes are very different from chlorophylls with 10× larger vibrational displacements upon photoexcitation and low-frequency vibrations modulating intermolecular orbital overlaps. Whether (and if so how) these unique features carry any mechanistic significance for SEF remains a poorly understood question. Accordingly, synthetic design of new molecules aiming to mimic this process across the solar spectrum has broadly relied on tuning electronic couplings. We address this gap and identify previously unrecognized synergistic interplay of vibrations, which in striking contrast to photosynthesis, vitally enhances SEF across a broad, nonselective and, therefore, unavoidable range of vibrational frequencies. We argue that attaching mechanistic significance to spectroscopically observed prominent quantum beats is misleading. Instead, we show that vibronic mixing leads to anisotropic quantum beats and propose readily implementable polarization-based two-dimensional electronic spectroscopy experiments which uniquely distinguish vibrations which drive vibronic mixing and promote SEF, against spectator vibrations simply accompanying ultrafast internal conversion. Our findings introduce crucial ingredients in synthetic design of SEF materials and spectroscopy experiments aiming to decipher mechanistic details from quantum beats.

Funder

DST | Science and Engineering Research Board

DAE | Board of Research in Nuclear Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3