Abstract
Coformycin and pentostatin are structurally related N-nucleoside inhibitors of adenosine deaminase characterized by an unusual 1,3-diazepine nucleobase. Herein, thecofgene cluster responsible for coformycin biosynthesis is identified. Reconstitution of the coformycin biosynthetic pathway in vitro demonstrates that it overlaps significantly with the early stages ofl-histidine biosynthesis. Committed entry into the coformycin pathway takes place via conversion of a shared branch point intermediate to 8-ketocoformycin-5′-monophosphate catalyzed by CofB, which is a homolog of succinylaminoimidazolecarboxamide ribotide (SAICAR) synthetase. This reaction appears to proceed via a Dieckmann cyclization and a retro-aldol elimination, releasing ammonia and D-erythronate-4-phosphate as coproducts. Completion of coformycin biosynthesis involves reduction and dephosphorylation of the CofB product, with the former reaction being catalyzed by the NADPH-dependent dehydrogenase CofA. CofB also shows activation by adenosine triphosphate (ATP) despite the reaction requiring neither a phosphorylated nor an adenylated intermediate. This may serve to help regulate metabolic partitioning between thel-histidine and coformycin pathways.
Funder
HHS | National Institutes of Health
Welch Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献