Exploring the landscape of model representations

Author:

Foley Thomas T.12ORCID,Kidder Katherine M.1ORCID,Shell M. Scott3ORCID,Noid W. G.1ORCID

Affiliation:

1. Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;

2. Department of Physics, The Pennsylvania State University, University Park, PA 16802;

3. Department of Chemical Engineering, University of California, Santa Barbara, CA 93106

Abstract

SignificancePhysical phenomena can often be described by surprisingly few order parameters. Unfortunately, it is challenging to identify these essential degrees of freedom. Here we develop a statistical physics framework for exploring the landscape of order parameters, or coarse-grained representations, for a microscopic protein model. We employ Monte Carlo methods to statistically characterize this landscape. We define metrics assessing the intrinsic quality of each representation for preserving the configurational information and large-scale motions of the underlying microscopic model. Interestingly, these metrics are anticorrelated in low-resolution representations. Moreover, below a critical resolution, a phase transition qualitatively distinguishes superior and inferior representations. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Reference66 articles.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unraveling internal friction in a coarse-grained protein model;The Journal of Chemical Physics;2025-03-19

2. References;Theoretical Foundations of Multiscale Modelling;2025

3. Coarse-graining molecular systems;Theoretical Foundations of Multiscale Modelling;2025

4. Enhancing the Assembly Properties of Bottom-Up Coarse-Grained Phospholipids;Journal of Chemical Theory and Computation;2024-11-13

5. AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics;Journal of Chemical Theory and Computation;2024-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3