Abstract
Social hierarchies are ubiquitous in social species and profoundly influence physiology and behavior. Androgens like testosterone have been strongly linked to social status, yet the molecular mechanisms regulating social status are not known. The African cichlid fishAstatotilapia burtoniis a powerful model species for elucidating the role of androgens in social status given their rich social hierarchy and genetic tractability. DominantA. burtonimales possess large testes and bright coloration and perform aggressive and reproductive behaviors while nondominant males do not. Social status inA. burtoniis in flux, however, as males alter their status depending on the social environment. Due to a teleost-specific whole-genome duplication,A. burtonipossess two androgen receptor (AR) paralogs,ARαandARβ, providing a unique opportunity to disentangle the role of gene duplication in the evolution of social systems. Here, we used CRISPR/Cas9 gene editing to generate AR mutantA. burtoniand performed a suite of experiments to interrogate the mechanistic basis of social dominance. We find thatARβ,but notARα, is required for testes growth and bright coloration, whileARα, but notARβ, is required for the performance of reproductive behavior and aggressive displays. Both receptors are required to reduce flees from females and either AR is sufficient for attacking males. Thus, social status inA. burtoniis inordinately dissociable and under the modular control of two AR paralogs. This type of nonredundancy may be important in facilitating social plasticity inA. burtoniand other species whose social status relies on social experience.
Funder
Arnold and Mabel Beckman Foundation
University of Houston
HHS | NIH | National Institute of Mental Health
HHS | NIH | National Institute of Neurological Disorders and Stroke
National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献