Planar device–enabled speckle illumination for dark-field label-free imaging beyond the diffraction limit

Author:

Fan Zetao1ORCID,You Xinxiang12,Zhang Douguo123ORCID

Affiliation:

1. Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China

2. Hefei National Laboratory, University of Science and Technology of China

3. Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China

Abstract

Dark-field microscopy is a technique used in optical microscopy to increase the contrast in unstained samples, making it possible to observe details that would otherwise be difficult to see under bright-field microscopy; thus, it has been widely employed in biological research, material science, and medical diagnostics. However, most dark-field microscopy methods cannot overcome the optical diffraction limit and require a bulky dark-field condenser and precise alignment of each optical element. In this study, we introduce a planar photonic device that can produce random speckles for dark-field illumination and improve the optical resolution. This planar device is made of random distribution fibers for injection of a laser beam, a scattering layer to produce random speckles, a one-dimensional photonic crystal (1DPC) to produce a hollow cone of light, and a metallic film to increase the energy efficiency. This planar device can work as a substrate for conventional microscopy. Taking advantage of the hollow cone of light with random speckles generated by the proposed planar device, we achieve a high-contrast, label-free image with a 1.55-fold improvement in spatial resolution. Furthermore, random evanescent speckles can be generated on the 1DPC just through tuning the incident wavelength, which demonstrates the ability for optical surface imaging beyond the diffraction limit. The advantage of this technique is that it does not require complex optical system or precise knowledge of the illumination pattern. This study will expand the potential applications of dark-field microscopy and provide insights into samples that might otherwise be invisible under traditional dark-field microscopy.

Funder

MOST | National Key Research and Development Program of China

National Nature Science Foundation of China

Key Research & Development Program of Anhui Province

Fundamental Research Funds for the Central Universities

Innovation Program for Quantum Science and Technology

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3