Identification of peptides from brain and pituitary of Cpe fat /Cpe fat mice

Author:

Che Fa-Yun1,Yan Lin1,Li Hong1,Mzhavia Nino1,Devi Lakshmi A.1,Fricker Lloyd D.1

Affiliation:

1. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461; and Department of Pharmacology, New York University School of Medicine, New York, NY 10016

Abstract

Cpe fat /Cpe fat mice have a naturally occurring point mutation within the carboxypeptidase E gene that inactivates this enzyme, leading to an accumulation of many neuroendocrine peptides containing C-terminal basic residues. These processing intermediates can be readily purified on an anhydrotrypsin affinity resin. Using MS to obtain molecular mass and partial sequence information, more than 100 peptides have been identified. These peptides represent fragments of 16 known secretory pathway proteins, including proenkephalin, proopiomelanocortin, protachykinins A and B, chromogranin A and B, and secretogranin II. Many of the identified peptides represent previously uncharacterized fragments of the precursors. For example, 12 of the 13 chromogranin B-derived peptides found in the present study have not been previously reported. Of these 13 chromogranin B-derived peptides, only five contain consensus cleavage sites for prohormone convertases at both the C and N termini. Two distinct chromogranin B-derived peptides result from cleavage at Trp-Trp bonds, a site not typically associated with neuropeptide processing. An RIA was used to confirm that one of these peptides, designated WE-15, exists in wild-type mouse brain, thus validating the approach to identify peptides in Cpe fat /Cpe fat mice. These “orphan” peptides are candidate ligands for orphan G protein-coupled receptors. In addition, the general technique of using affinity chromatography to isolate endogenous substrates from a mutant organism lacking an enzyme should be applicable to a wide range of enzyme-substrate systems.

Publisher

Proceedings of the National Academy of Sciences

Reference51 articles.

1. R E Mains, I M Dickerson, V May, D A Stoffers, S N Perkins, L H Ouafik, E J Husten, B A Eipper Front Endocrinol 11, 52–89 (1990).

2. D F Steiner Peptide Biosynthesis and Processing, ed L D Fricker (CRC, Boca Raton, FL), pp. 1–16 (1991).

3. Eukaryotic protein processing: endoproteolysis of precursor proteins

4. [13] Pro-protein convertases of subtilisin/kexin family

5. Proteolytic Processing in the Secretory Pathway

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3