Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid

Author:

Levine J D,Lam D,Taiwo Y O,Donatoni P,Goetzl E J

Abstract

Induction of hyperalgesia by leukotriene B4 (LTB4), a potent chemotactic factor for polymorphonuclear leukocytes (PMNLs), depends on the generation by cutaneous PMNLs of mediators that are probably derived from the 15-lipoxygenation of arachidonic acid. The capacity of dihydroxyeicosatetraenoic acid (diHETE) products of the 15-lipoxygenation of arachidonic acid in PMNL to elicit hyperalgesia was evaluated by assessing the effects of intradermal injection of synthetic diHETEs on the pressure nociceptive threshold in rats. (8R,15S)-Dihydroxyeicosa-(5E-9,11,13Z)-tetraenoic acid [(8R,15S)-diHETE] produced a dose-dependent hyperalgesia, as measured by decrease in threshold for paw withdrawal. The isomer (8S,15S)-diHETE antagonized in a dose-dependent manner this hyperalgesia due to (8R,15S)-diHETE but did not suppress prostaglandin E2-induced hyperalgesia. (8S,15S)-DiHETE produced a dose-dependent hypoalgesia, as reflected by an increase in nociceptive threshold, suggesting a contribution of endogenous (8R,15S)-diHETE to normal nociceptive threshold. The hypoalgesic effect of (8S,15S)-diHETE was blocked by corticosteroids but not by the cyclooxygenase inhibitor indomethacin. Neither (8R,15S)-dihydroxyeicosa-(5,15E-9,11Z)-tetraenoic acid nor (8R,15S)-dihydroxyeicosa-(5,11E-9,13Z)-tetraenoic acid exhibited any hyperalgesic or hypoalgesic activity. The stereospecificity of the effect of (8R,15S)-diHETE suggests that the induction of hyperalgesia is a receptor-dependent phenomenon and that (8S,15S)-diHETE may be an effective receptor-directed antagonist. The (8R,15S)-diHETE and (8S,15S)-diHETE from PMNL, keratinocytes, and other epithelial cells may modulate normal primary afferent function and contribute to inflammatory hyperalgesia.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3