p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells

Author:

Nagano HidekazuORCID,Hashimoto Naoko,Nakayama Akitoshi,Suzuki Sawako,Miyabayashi Yui,Yamato Azusa,Higuchi Seiichiro,Fujimoto Masanori,Sakuma Ikki,Beppu Minako,Yokoyama Masataka,Suzuki Yutaka,Sugano Sumio,Ikeda Kazuhiro,Tatsuno Ichiro,Manabe Ichiro,Yokote Koutaro,Inoue Satoshi,Tanaka TomoakiORCID

Abstract

The tumor suppressor p53 regulates multiple cellular functions, including energy metabolism. Metabolic deregulation is implicated in the pathogenesis of some cancers and in metabolic disorders and may result from the inactivation of p53 functions. Using RNA sequencing and ChIP sequencing of cancer cells and preadipocytes, we demonstrate that p53 modulates several metabolic processes via the transactivation of energy metabolism genes including dihydropyrimidinase-like 4 (DPYSL4). DPYSL4 is a member of the collapsin response mediator protein family, which is involved in cancer invasion and progression. Intriguingly, DPYSL4 overexpression in cancer cells and preadipocytes up-regulated ATP production and oxygen consumption, while DPYSL4 knockdown using siRNA or CRISPR/Cas9 down-regulated energy production. Furthermore, DPYSL4 was associated with mitochondrial supercomplexes, and deletion of its dihydropyrimidinase-like domain abolished its association and its ability to stimulate ATP production and suppress the cancer cell invasion. Mouse-xenograft and lung-metastasis models indicated that DPYSL4 expression compromised tumor growth and metastasis in vivo. Consistently, database analyses demonstrated that low DPYSL4 expression was significantly associated with poor survival of breast and ovarian cancers in accordance with its reduced expression in certain types of cancer tissues. Moreover, immunohistochemical analysis using the adipose tissue of obese patients revealed that DPYSL4 expression was positively correlated with INFg and body mass index in accordance with p53 activation. Together, these results suggest that DPYSL4 plays a key role in the tumor-suppressor function of p53 by regulating oxidative phosphorylation and the cellular energy supply via its association with mitochondrial supercomplexes, possibly linking to the pathophysiology of both cancer and obesity.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3