Defective respiration and one-carbon metabolism contribute to impaired naïve T cell activation in aged mice

Author:

Ron-Harel Noga,Notarangelo Giulia,Ghergurovich Jonathan M.,Paulo Joao A.,Sage Peter T.,Santos Daniel,Satterstrom F. Kyle,Gygi Steven P.,Rabinowitz Joshua D.,Sharpe Arlene H.,Haigis Marcia C.

Abstract

T cell-mediated immune responses are compromised in aged individuals, leading to increased morbidity and reduced response to vaccination. While cellular metabolism tightly regulates T cell activation and function, metabolic reprogramming in aged T cells has not been thoroughly studied. Here, we report a systematic analysis of metabolism during young versus aged naïve T cell activation. We observed a decrease in the number and activation of naïve T cells isolated from aged mice. While young T cells demonstrated robust mitochondrial biogenesis and respiration upon activation, aged T cells generated smaller mitochondria with lower respiratory capacity. Using quantitative proteomics, we defined the aged T cell proteome and discovered a specific deficit in the induction of enzymes of one-carbon metabolism. The activation of aged naïve T cells was enhanced by addition of products of one-carbon metabolism (formate and glycine). These studies define mechanisms of skewed metabolic remodeling in aged T cells and provide evidence that modulation of metabolism has the potential to promote immune function in aged individuals.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3