MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana

Author:

Vaistij Fabián E.,Barros-Galvão Thiago,Cole Adama F.,Gilday Alison D.,He Zhesi,Li Yi,Harvey David,Larson Tony R.,Graham Ian A.ORCID

Abstract

Seed germination in many plant species is triggered by sunlight, which is rich in the red (R) wavelength and repressed by under-the-canopy light rich in far red (FR). R:FR ratios are sensed by phytochromes to regulate levels of gibberellins (GAs) and abscisic acid (ABA), which induce and inhibit germination respectively. In this study we have discovered that, under FR light conditions, germination is repressed by MOTHER-OF-FT-AND-TFL1 (MFT) through the regulation of the ABA and GA signaling pathways. We also show that MFT gene expression is tightly regulated by light quality. Previous work has shown that under FR light conditions the transcription factor PHYOCHROME-INTERACTING-FACTOR1 (PIF1) accumulates and promotes expression of SOMNUS (SOM) that, in turn, leads to increased ABA and decreased GA levels. PIF1 also promotes expression of genes encoding ABA-INSENSITIVE5 (ABI5) and DELLA growth-repressor proteins, which act in the ABA and GA signaling pathways, respectively. Here we show that MFT gene expression is promoted by FR light through the PIF1/SOM/ABI5/DELLA pathway and is repressed by R light via the transcription factor SPATULA (SPT). Consistent with this, we also show that SPT gene expression is repressed under FR light in a PIF1-dependent manner. Furthermore, transcriptomic analyses presented in this study indicate that MFT exerts its function by promoting expression of known ABA-induced genes and repressing cell wall expansion-related genes.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

Garfield Weston Foundation

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Islamic Development Bank

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3