The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation

Author:

Rohrer S.1,Ehlert K.1,Tschierske M.1,Labischinski H.1,Berger-Bächi B.1

Affiliation:

1. Institute of Medical Microbiology, University of Zürich, Gloriastr. 32, Postfach, CH-8028 Zürich, Switzerland; and Bayer AG, PH-Research Antiinfectives I, D-42096 Wuppertal, Germany

Abstract

The factor catalyzing the first step in the synthesis of the characteristic pentaglycine interpeptide in Staphylococcus aureus peptidoglycan was found to be encoded by the essential gene fmhB . We have analyzed murein composition and structure synthesized when fmhB expression is reduced. The endogenous fmhB promoter was substituted with the xylose regulon from Staphylococcus xylosus , which allowed glucose-controlled repression of fmhB transcription. Repression of fmhB reduced growth and triggered a drastic accumulation of uncrosslinked, unmodified muropeptide monomer precursors at the expense of the oligomeric fraction, leading to a substantial decrease in overall peptidoglycan crosslinking. The composition of the predominant muropeptide was confirmed by MS to be N- acetylglucosamine-(β-1,4)- N- acetylmuramic acid(- l -Ala- d -iGln- l -Lys- d -Ala- d -Ala), proving that FmhB is involved in the attachment of the first glycine to the pentaglycine interpeptide. This interpeptide plays an important role in crosslinking and stability of the S. aureus cell wall, acts as an anchor for cell wall-associated proteins, determinants of pathogenicity, and is essential for the expression of methicillin resistance. Any shortening of the pentaglycine side chain reduces or even abolishes methicillin resistance, as occurred with fmhB repression. Because of its key role FmhB is a potential target for novel antibacterial agents that could control the threat of emerging multiresistant S. aureus .

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3