A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model

Author:

Capell Brian C.12,Olive Michelle1,Erdos Michael R.1,Cao Kan1,Faddah Dina A.1,Tavarez Urraca L.1,Conneely Karen N.3,Qu Xuan1,San Hong1,Ganesh Santhi K.1,Chen Xiaoyan1,Avallone Hedwig4,Kolodgie Frank D.4,Virmani Renu4,Nabel Elizabeth G.15,Collins Francis S.1

Affiliation:

1. *Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8004;

2. New York University School of Medicine, New York, NY 10016;

3. Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322;

4. CVPath, Gaithersburg, MD 20878; and

5. National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892

Abstract

Hutchinson-Gilford progeria syndrome (HGPS) is the most dramatic form of human premature aging. Death occurs at a mean age of 13 years, usually from heart attack or stroke. Almost all cases of HGPS are caused by a de novo point mutation in the lamin A ( LMNA ) gene that results in production of a mutant lamin A protein termed progerin. This protein is permanently modified by a lipid farnesyl group, and acts as a dominant negative, disrupting nuclear structure. Treatment with farnesyltransferase inhibitors (FTIs) has been shown to prevent and even reverse this nuclear abnormality in cultured HGPS fibroblasts. We have previously created a mouse model of HGPS that shows progressive loss of vascular smooth muscle cells in the media of the large arteries, in a pattern that is strikingly similar to the cardiovascular disease seen in patients with HGPS. Here we show that the dose-dependent administration of the FTI tipifarnib (R115777, Zarnestra) to this HGPS mouse model can significantly prevent both the onset of the cardiovascular phenotype as well as the late progression of existing cardiovascular disease. These observations provide encouraging evidence for the current clinical trial of FTIs for this rare and devastating disease.

Publisher

Proceedings of the National Academy of Sciences

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3