Mitotic and pheromone-specific intrinsic polarization cues interfere with gradient sensing inSaccharomyces cerevisiae

Author:

Vasen Gustavo,Dunayevich Paula,Colman-Lerner AlejandroORCID

Abstract

Polarity decisions are central to many processes, including mitosis and chemotropism. InSaccharomyces cerevisiae, budding and mating projection (MP) formation use an overlapping system of cortical landmarks that converges on the small G protein Cdc42. However, pheromone-gradient sensing must override the Rsr1-dependent internal polarity cues used for budding. Using this model system, we asked what happens when intrinsic and extrinsic spatial cues are not aligned. Is there competition, or collaboration? By live-cell microscopy and microfluidics techniques, we uncovered three previously overlooked features of this signaling system. First, the cytokinesis-associated polarization patch serves as a polarity landmark independently of all known cues. Second, the Rax1-Rax2 complex functions as a pheromone-promoted polarity cue in the distal pole of the cells. Third, internal cues remain active during pheromone-gradient tracking and can interfere with this process, biasing the location of MPs. Yeast defective in internal-cue utilization align significantly better than wild type with artificially generated pheromone gradients.

Funder

HHS | NIH | National Institute of General Medical Sciences

MINCyT | ANPCyT | Fondo para la Investigación Científica y Tecnológica

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A focus on yeast mating: From pheromone signaling to cell-cell fusion;Seminars in Cell & Developmental Biology;2023-01

2. Chemotropism and Cell-Cell Fusion in Fungi;Microbiology and Molecular Biology Reviews;2022-03-16

3. Chemotactic movement of a polarity site enables yeast cells to find their mates;Proceedings of the National Academy of Sciences;2021-05-28

4. Phosphorylated Gβ is a directional cue during yeast gradient tracking;Science Signaling;2021-05-11

5. Exploratory polarization facilitates mating partner selection in Saccharomyces cerevisiae;Molecular Biology of the Cell;2021-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3