Strong spatial embedding of social networks generates nonstandard epidemic dynamics independent of degree distribution and clustering

Author:

Haw David J.ORCID,Pung Rachael,Read Jonathan M.,Riley StevenORCID

Abstract

Some directly transmitted human pathogens, such as influenza and measles, generate sustained exponential growth in incidence and have a high peak incidence consistent with the rapid depletion of susceptible individuals. Many do not. While a prolonged exponential phase typically arises in traditional disease-dynamic models, current quantitative descriptions of nonstandard epidemic profiles are either abstract, phenomenological, or rely on highly skewed offspring distributions in network models. Here, we create large socio-spatial networks to represent contact behavior using human population-density data, a previously developed fitting algorithm, and gravity-like mobility kernels. We define a basic reproductive numberR0for this system, analogous to that used for compartmental models. Controlling forR0, we then explore networks with a household–workplace structure in which between-household contacts can be formed with varying degrees of spatial correlation, determined by a single parameter from the gravity-like kernel. By varying this single parameter and simulating epidemic spread, we are able to identify how more frequent local movement can lead to strong spatial correlation and, thus, induce subexponential outbreak dynamics with lower, later epidemic peaks. Also, the ratio of peak height to final size was much smaller when movement was highly spatially correlated. We investigate the topological properties of our networks via a generalized clustering coefficient that extends beyond immediate neighborhoods, identifying very strong correlations between fourth-order clustering and nonstandard epidemic dynamics. Our results motivate the observation of both incidence and socio-spatial human behavior during epidemics that exhibit nonstandard incidence patterns.

Funder

Wellcome

DH | National Institute for Health Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3