The role of carbonic anhydrases in extinction of contextual fear memory

Author:

Schmidt Scheila DaianeORCID,Costa AlessiaORCID,Rani Barbara,Godfried Nachtigall Eduarda,Passani Maria BeatriceORCID,Carta Fabrizio,Nocentini Alessio,de Carvalho Myskiw Jociane,Furini Cristiane Regina Guerino,Supuran Claudiu T.,Izquierdo Ivan,Blandina PatrizioORCID,Provensi GustavoORCID

Abstract

Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes present in mammals with 16 isoforms that differ in terms of catalytic activity as well as cellular and tissue distribution. CAs catalyze the conversion of CO2to bicarbonate and protons and are involved in various physiological processes, including learning and memory. Here we report that the integrity of CA activity in the brain is necessary for the consolidation of fear extinction memory. We found that systemic administration of acetazolamide, a CA inhibitor, immediately after the extinction session dose-dependently impaired the consolidation of fear extinction memory of rats trained in contextual fear conditioning.d-phenylalanine, a CA activator, displayed an opposite action, whereas C18, a membrane-impermeable CA inhibitor that is unable to reach the brain tissue, had no effect. Simultaneous administration of acetazolamide fully prevented the procognitive effects ofd-phenylalanine. Whereasd-phenylalanine potentiated extinction, acetazolamide impaired extinction also when infused locally into the ventromedial prefrontal cortex, basolateral amygdala, or hippocampal CA1 region. No effects were observed when acetazolamide ord-phenylalanine was infused locally into the substantia nigra pars compacta. Moreover, systemic administration of acetazolamide immediately after the extinction training session modulated c-Fos expression on a retention test in the ventromedial prefrontal cortex of rats trained in contextual fear conditioning. These findings reveal that the engagement of CAs in some brain regions is essential for providing the brain with the resilience necessary to ensure the consolidation of extinction of emotionally salient events.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carbonic anhydrases;Metalloenzymes;2024

2. Carbon dioxide and MAPK signalling: towards therapy for inflammation;Cell Communication and Signaling;2023-10-10

3. State of the art of carbonic anhydrase activators;Future Medicinal Chemistry;2023-10-10

4. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation;Bioorganic & Medicinal Chemistry Letters;2023-09

5. Upregulation of carbonic anhydrase 1 beneficial for depressive disorder;Acta Neuropathologica Communications;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3