Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization

Author:

Donoho David L.1,Elad Michael1

Affiliation:

1. Departments of Statistics and Computer Science, Stanford University, Stanford, CA 94305

Abstract

Given a dictionary D = { d k } of vectors d k , we seek to represent a signal S as a linear combination S = ∑ k γ( k ) d k , with scalar coefficients γ ( k ). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered the special case where D is an overcomplete system consisting of exactly two orthobases and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex optimization problem: specifically, minimizing the ℓ 1 norm of the coefficients γ̱. In this article, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We sketch three applications: separating linear features from planar ones in 3D data, noncooperative multiuser encoding, and identification of over-complete independent component models.

Publisher

Proceedings of the National Academy of Sciences

Reference23 articles.

1. S Mallat A Wavelet Tour of Signal Processing (Academic, 2nd Ed., London, 1998).

2. Atomic Decomposition by Basis Pursuit

3. R Coifman, Y Meyer, M V Wickerhauser ICIAM 1991, Proceedings of the Second International Conference on Industrial and Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia), pp. 41–50 (1992).

4. M V Wickerhauser Adapted Wavelet Analysis from Theory to Software (Addison–Wesley, Reading, MA, 1994).

5. A P Berg, W B Mikhael Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (IEEE, New York) 4, 106–109 (1999).

Cited by 2277 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3