Affiliation:
1. Institute of Molecular Biology, University of Oregon, Eugene, Oreg. 97403
2. Department of Chemistry, University of Oregon, Eugene, Oreg. 97403
Abstract
The regulatory system of the lactose operon has been “modeled” by a set of mass action equations and conservation constraints which describe the system at equilibrium. A “base-set” of values of binding constants and total component concentrations has been assembled from the available experimental data, and the simultaneous equations solved by computer procedures, to yield equilibrium concentrations of all the relevant molecular species. Considering the operator-repressor-inducer system alone, it is shown that the
in vivo
basal and induced (derepressed) levels of
lac
enzyme synthesis in both wild-type and certain mutant
Escherichia coli
can be accounted for only if binding of repressor and repressor-inducer complexes to non-specific DNA sites is included in the calculations as an integral component of the ovrall control system. A similar approach was applied to the RNA polymerase-promoter system to show that sigma factor may modulate the general level of transcription in the cell by “inducing” polymerase off non-specific DNA binding sites, thus making it available to promoters. Competitive and non-competitive models for the interaction of repressor and polymerase at the
lac
operon can, in principle, be distinguished by these computational procedures, though data sufficient to permit unambiguous differentiation between the models are not available at this time. However, for any competitive binding model the results show that repression in the entire (operator-repressor-RNA polymerase-
lac
promoter) system can occur only because non-specific binding of the regulatory proteins reduces the concentration of free polymerase, relative to that of repressor, to appropriate levels.
Publisher
Proceedings of the National Academy of Sciences
Cited by
192 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献